3.10.76 \(\int \frac {x^4}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx\) [976]

Optimal. Leaf size=261 \[ -\frac {2 (b c+a d) x \sqrt {a+b x^2}}{3 b^2 d \sqrt {c+d x^2}}+\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b d}+\frac {2 \sqrt {c} (b c+a d) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b^2 d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {c^{3/2} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

-2/3*(a*d+b*c)*x*(b*x^2+a)^(1/2)/b^2/d/(d*x^2+c)^(1/2)-1/3*c^(3/2)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*Ell
ipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(b*x^2+a)^(1/2)/b/d^(3/2)/(c*(b*x^2+a)/a/(d*x^2+
c))^(1/2)/(d*x^2+c)^(1/2)+2/3*(a*d+b*c)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1
+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*(b*x^2+a)^(1/2)/b^2/d^(3/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+
c)^(1/2)+1/3*x*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 261, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {490, 545, 429, 506, 422} \begin {gather*} \frac {2 \sqrt {c} \sqrt {a+b x^2} (a d+b c) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b^2 d^{3/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {c^{3/2} \sqrt {a+b x^2} F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b d^{3/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {2 x \sqrt {a+b x^2} (a d+b c)}{3 b^2 d \sqrt {c+d x^2}}+\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^4/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

(-2*(b*c + a*d)*x*Sqrt[a + b*x^2])/(3*b^2*d*Sqrt[c + d*x^2]) + (x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*b*d) + (
2*Sqrt[c]*(b*c + a*d)*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*b^2*d^(3/2)*
Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]) - (c^(3/2)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)
/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*b*d^(3/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 490

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(2*n -
 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q) + 1))), x] - Dist[e^(2*n)
/(b*d*(m + n*(p + q) + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m +
 n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d
, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rubi steps

\begin {align*} \int \frac {x^4}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx &=\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b d}-\frac {\int \frac {a c+2 (b c+a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 b d}\\ &=\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b d}-\frac {(a c) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 b d}-\frac {(2 (b c+a d)) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 b d}\\ &=-\frac {2 (b c+a d) x \sqrt {a+b x^2}}{3 b^2 d \sqrt {c+d x^2}}+\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b d}-\frac {c^{3/2} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {(2 c (b c+a d)) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 b^2 d}\\ &=-\frac {2 (b c+a d) x \sqrt {a+b x^2}}{3 b^2 d \sqrt {c+d x^2}}+\frac {x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 b d}+\frac {2 \sqrt {c} (b c+a d) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b^2 d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {c^{3/2} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 b d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.55, size = 201, normalized size = 0.77 \begin {gather*} \frac {\sqrt {\frac {b}{a}} d x \left (a+b x^2\right ) \left (c+d x^2\right )+2 i c (b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-i c (2 b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{3 b \sqrt {\frac {b}{a}} d^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^4/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

(Sqrt[b/a]*d*x*(a + b*x^2)*(c + d*x^2) + (2*I)*c*(b*c + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE
[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*c*(2*b*c + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*
ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(3*b*Sqrt[b/a]*d^2*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 333, normalized size = 1.28

method result size
risch \(\frac {x \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}{3 b d}-\frac {\left (-\frac {\left (2 a d +2 b c \right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}\, d}+\frac {a c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}\right ) \sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}}{3 b d \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(293\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (\frac {x \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}{3 b d}-\frac {a c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{3 b d \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}+\frac {\left (2 a d +2 b c \right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{3 b \,d^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(301\)
default \(\frac {\left (\sqrt {-\frac {b}{a}}\, b \,d^{2} x^{5}+\sqrt {-\frac {b}{a}}\, a \,d^{2} x^{3}+\sqrt {-\frac {b}{a}}\, b c d \,x^{3}+a c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) d +2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}-2 \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a c d -2 \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, b \,c^{2}+\sqrt {-\frac {b}{a}}\, a c d x \right ) \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}{3 \sqrt {-\frac {b}{a}}\, d^{2} b \left (b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c \right )}\) \(333\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*((-b/a)^(1/2)*b*d^2*x^5+(-b/a)^(1/2)*a*d^2*x^3+(-b/a)^(1/2)*b*c*d*x^3+a*c*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c
)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*d+2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/
a)^(1/2),(a*d/b/c)^(1/2))*b*c^2-2*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^
(1/2)*a*c*d-2*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*b*c^2+(-b/a)^(
1/2)*a*c*d*x)*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/(-b/a)^(1/2)/d^2/b/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^4/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{4}}{\sqrt {a + b x^{2}} \sqrt {c + d x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(b*x**2+a)**(1/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral(x**4/(sqrt(a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(x^4/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^4}{\sqrt {b\,x^2+a}\,\sqrt {d\,x^2+c}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)),x)

[Out]

int(x^4/((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)), x)

________________________________________________________________________________________